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We assessed the ameliorative effect of Virgin Coconut Oil following atrazine-induced
metabolic derangement in rats. Adult male wistar rats weighing 180-200g were used;
randomly separated into two major groups. Thirty-five rats in the test group were randomly
divided into five sub-groups of 7 rats per sub-group and treated thus: Sub-group (SG) 1, 2 and
3 received 10ml/kg of distilled water, 10ml/kg VCO, 123mg/kg of Atrazine respectively, SG4
was diabetic control; SG 5 was the diabetic group treated with 10ml/kg of VCO for 2 weeks,
after which the animals were sacrificed and blood collected for analysis. 35 rats for the
recovery group were also divided into 5 sub-groups of 7 rats per sub-group and were treated;
SG 1, 2, 3, 4 and 5 received 10ml/kg distilled water, 10ml/kg VCO, 123mg/kg of ATZ
respectively. After 2 weeks, the animals were re-treated thus: SG 1,2,3,4 and 5 received
10ml/kg of distilled water, 10ml/kg of VCO, 123mg/kg of ATZ, 10ml/kg VCO and 10ml/kg
distilled water respectively. After 2 weeks, the animals were also sacrificed and blood
collected for analysis. ATZ reduced serum insulin and a reduced expression of GLUT4. VCO
restored GLUT4 levels but did not significantly restore the insulin to the normal levels.
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  Introduction  

Glucose transporters are a large family of structurally related transport proteins that affect the
entry of glucose molecules into the cell (1). Three types of glucose transporters have been identified:
sodium-glucose-linked transporter or sodium-dependent glucose co-transporter (SGLUT), facilitated
diffusion glucose transporters, or sodium-dependent glucose transporters (GLUTS) and SWEETs (1,

2). The GLUTs transport glucose across the plasma membrane by means of a facilitated diffusion
mechanism (1). GLUT4 is the primary insulin-responsive glucose transporter found in the heart,
skeletal muscles, adipose tissues, and brain. It belongs to class II of the GLUTs family of glucose
transporters (1). GLUT4 is a significant mediator of glucose removal from the circulation and a key
regulator of the whole-body glucose homeostasis (3). Expression and translocation (to tissue
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surface) of GLUT4 receptors are mainly regulated by insulin secretion. Contraction of skeletal and
cardiac muscles also increases expression and translocation of GLUT4 expression (4). Reduced
GLUT4 expression is notably associated with insulin resistance (5). In its basal state, most of the
GLUT4 is located within specialized vesicles. In response to insulin or contraction stimulation, most
of the transporters are rapidly translocated to the plasma membrane, where they take up
extracellular glucose into the cell and then are recycled and stored until new stimulation occurs (6).

There is an association between diabetes and GLUT4 concentration and responsiveness. Mice with
type II DM have been indicated to have up to 70% reduction of GLUT4 in the cardiac muscle (7).
Oxidative stress was reported to cause oxidation and carbonylation near the glucose transport
channel of GLUT4 transporters, thus leaving them dysfunctional; this dysfunction results in insulin
resistance (8). So, there seem to exist a two-way relationship between GLUT4 and DM: reduced
GLUT4 production/expression results in insulin resistance - although GLUT4 polymorphism is rare,
and mutations are more likely to occur in the elderly (9), and the mechanism of insulin resistance
may result in an impaired translocation and expression of GLUT4 at various sites (10). Translocation
of GLUT4 to the cell surface is a significant part of the underlying molecular mechanism
responsible for the insulin-mediated increased Vmax of glucose transport (11). Transgenic
manipulation of GLUT4 levels has revealed that GLUT4 is, indeed, rate-limiting for insulin-
dependent glucose uptake (12, 13). 

Atrazine (ATZ), a persistent organic pollutant, is one of the most used herbicides worldwide and
Nigeria (14). People are exposed to ATZ in the air (15) (Mair, 1978), water (16), and food. The atrazine
effect in humans and animals primarily involves the endocrine system. Studies suggest that
Atrazine is an endocrine disruptor that can cause hormone imbalance (17). ATZ has induced obesity
and insulin resistance in rats by impairing mitochondrial function (18).

Studies suggest that Atrazine is an endocrine disruptor that can cause hormone imbalance (17).
Atrazine can suppress the expression of functional glucose transporter in several organs leading to
excessive blood glucose levels because glucose could not be picked up by the cells for metabolism,
which could ultimately lead to diabetes (18). Atrazine also causes mitochondrial dysfunction (19),
which would lead to a decrease in substrate oxidation. The reduced oxidation, particularly fatty
acids, results in lipid accumulation, including deposition of metabolically active lipid mediators
such as diacylglycerols and ceramides (20). Both diacylglycerol and ceramides (DAG and CER) have
been shown to inhibit insulin signaling. DAG through protein kinase c activation translocate to the
plasma membrane and inhibits insulin receptor (21) and CER through inhibition of the protein kinase
ART (22). Therefore, DAG and CER accumulation are a plausible link between mitochondrial
dysfunction and insulin resistance (20). 

Virgin Coconut Oil (VCO) is unprocessed oil obtained from the mature and fresh kernel of the
coconut fruit by mechanical or natural means, with or without mild heat (23). VCO is rich in Lauric
acid, an essential fatty acid that transforms into a compound - Monolaurin Acid that is believed to
fight viral pathogens and protect the body from parasites (24). VCO has been found to have
hypoglycemic actions by enhancing insulin secretion and ameliorating oxidative stress-induced in
type I Diabetes mellitus (DM) induced rats (25). VCO was also found to ameliorate high-density
lipoprotein levels in induced diabetic male rats (26). As the regular determination of lipid levels and
proper dieting is paramount in preventing the prevalence of certain risk factors (such as obesity)
associated with DM (26), VCO's effects on high-density fats may be beneficial to the management of
and prevention of diabetes.

  AIMS 

This study aims to evaluate the fasting blood glucose level, serum insulin level, and GLUT-4 levels
in control; Atrazine administered, and diabetic groups.

  MATERIALS AND METHODS  
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  Experimental animals  

Adult male albino Wistar rats (180-200g body weight) were purchased and maintained at the
animal house Unit of the Department of Physiology, Faculty of Basic Medical Sciences, University
of Calabar. The animals were kept in a well-ventilated space to acclimatize for two weeks. The
animals were fed with rat chow and allowed drinking water ad libitum. After the acclimatization
period, the animals were weighed, their fasting blood glucose level was measured and reassigned
before the commencement of the experimental treatment. The cages were cleared and kept clean
throughout the experiment.

  Experimental design and treatment of animals  

We randomly assigned the thirty five (35) rats into two main groups named; the test group and
recovery groups. The 35 rats in the test group were further assigned to five subgroups of seven
rats each 

Sub-Group (SG)1 was normal control administered 10ml/kg body weight of distilled water, SG 2
was administered 10ml/kg of Virgin Coconut Oil (VCO), SG 3 was administered received 123mg/kg
(20% of lethal dose) of Atrazine (ATZ), SG 4 was the diabetic control and were left untreated, and
SG 5 was the diabetic group and was administered 10ml/kg of VCO once daily by oral gavage.
Administration in the test group was for 2 weeks, then the rats were sacrificed and blood collected
for analysis. Group 4 and 5 were made diabetic after being assigned to their sub-groups.

Simultaneously in the first 2 weeks', thirty-five rats for the recovery group were also sub-divided
into 5 sub-groups of 7 rats each: (SG) 1 was normal control and was administered 10ml/kg body
weight of distilled water, SG 2 was administered 10ml/kg of Virgin Coconut Oil (VCO), SG 3, 4 and
5 were administered 123mg/kg of ATZ. After the first 2 weeks, the animals were then re-treated for
recovery as follows: (SG) 1 was still administered 10ml/kg body weight of distilled water, SG 2 was
also still administered 10ml/kg of Virgin Coconut Oil (VCO), 123mg/kg of ATZ administration also
continued in SG 3, while SG 4 was administered 10ml/kg of VCO, and SG 5 was administered
10ml/kg of distilled water. Recovery treatment also lasted for 2 weeks, after which the animals
were sacrificed and blood collected for analysis. 

  GROUPS   TREATMENT
  Normal Control + H    2    0 10ml/kg of distilled water (H2O)
  Normal Control + VCO 10ml/kg of Virgin Coconut Oil (VCO)
  Atrazine Treated 123mg/kg (20% of lethal dose) of Atrazine
  Diabetic Control 10ml/kg of distilled water (H2O)
  Diabetic +VCO 10ml/kg of Virgin Coconut Oil (VCO)

Table 1.   Experimental grouping and treatment test group (2 weeks)    

  GROUPS   TREATMENT (1st 2 weeks)   TREATMENT (2nd 2 weeks)
  Normal Control + H    2    0 10ml/kg of distilled water (H2O) 10ml/kg of distilled water (H2O)
  Normal Control + VCO 10ml/kg of Virgin Coconut Oil (VCO) 10ml/kg of Virgin Coconut Oil (VCO)
  Atrazine Treated 123mg/kg (20% of lethal dose) of

Atrazine
123mg/kg (20% of lethal dose) of
Atrazine

  VCO after ATZ 123mg/kg (20% of lethal dose) of
Atrazine

10ml/kg of Virgin Coconut Oil (VCO)

  Untreated after ATZ 123mg/kg (20% of lethal dose) of
Atrazine

10ml/kg of distilled water (H2O)

Table 2.  RECOVERY GROUP (4 WEEKS)   
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Induction of Diabetes mellitus (DM): Diabetes was induced intraperitoneally using 150mg/kg
body weight of alloxan monohydrate once (27, 28). The diabetic state was observed from about 48
hours by the symptoms of polyuria and glucosuria. After 72 hours, DM was confirmed with a blood
glucose level of 180-200mg/dL and above (25) using a glucometer (ACCU-CHECK Active) and ACCU-
CHECK compatible glucose test strips.

Preparation of Virgin Coconut Oil (VCO): Mature dried coconuts were purchased from the local
market, and VCO was extracted using the modified wet extraction method (29). The solid endosperm
of mature coconut was crushed and made into a thick slurry. About 500 ml of water was added to
the slurry obtained and squeezed through a fine sieve to obtain coconut milk. The resultant coconut
milk was left for about 18 hours to facilitate the gravitational separation of the emulsion.
Demulsification produced layers of an aqueous phase (water) at the bottom, an oil phase in the
middle layer, and an emulsion phase (cream) on top. The cream on top was removed, and the oil
was scooped and warmed for about 5 minutes to remove moisture. The oil obtained was then
filtered and stored at room temperature.

Determination of fasting blood glucose: Fasting blood glucose was determined using ACCU-
Check blood glucose meter with compatible glucose test strips according to prescribed instructions
by pricking the tail tip and dropping blood gently on the test strip. This was done before the
induction of diabetes and 72 hours after induction; after which it was done weekly

Estimation of serum insulin concentration: The RayBio Rat Insulin ELISA kit (USA) was used
for the determination of serum insulin concentration as used by Ghezzi et al. (2012) (30). 

Assay Procedure: 100 μl of each standard and sample were pipetted into appropriate wells and
covered; they were incubated for 2.5 hours at room temperature with gentle shaking. (The Insulin
present in a sample will bind to the wells by the immobilized antibody). The solution was discarded,
and 300 μl of the wash buffer was pipetted into each well and washed 4 times. After the last wash,
the plate was inverted and blotted against clean paper towels. 100 μl of biotinylated anti-Rat
Insulin antibody was then added to each well and incubated for 1 hour at room temperature
(18-25°C) with gentle shaking. The solution was discarded, and wells washed as before to remove
unbound biotinylated antibodies. 100 μl of HRP-conjugated Streptavidin solution was added to each
well and incubated for 45 minutes at room temperature (18-25°C) with gentle shaking. The solution
was discarded and washed as before. 100 μl of TMB One-Step Substrate Reagent was added to
each well and incubated for 30minutes at room temperature in the dark with gentle shaking. The
blue color developed in proportion to the amount of insulin bound. Lastly, 50 μl of Stop Solution
was then added to each well which changes the color from blue to yellow, and the intensity of the
color is measured at 450 nm.

Ethical Approval: Full ethical approval (022PY30417) was given by the Faculty Animal Research
Ethics Committee, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Cross Rivers
State. This was in accordance with the declaration of Helsinki (1964).

  Statistical analysis  

Statistical analysis was carried out using the windows SPSS package (SPSS 20.0). Data were
analyzed using one-way ANOVA followed by Tukey's post hoc test. Data were expressed as mean +
standard error of the mean (Mean±SEM). Results with values of p<0.05 were considered
significant.

  RESULTS  

  Insulin levels (µIU/ml) in normal control, ATZ , and diabetic groups  
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The mean values for insulin are 14.94±0.31, 16.18±0.16, 11.82±0.31, 10.68±0.41, and 12.34±0.12
for NC + H2O, NC + VCO, ATZ treated, Diabetic control, and Diabetic +VCO groups, respectively.
In figure 1, there was a significant (p<0.05) increase in insulin levels in the NC + VCO group when
compared to the NC + H2O. ATZ significantly (p<0.05) decreased insulin levels when compared
with the NC + H2O and NC + VCO. Insulin level in the diabetic untreated group was significantly
(p<0.05) lower than NC + H2O, NC + VCO and ATZ administered groups. VCO administration
significantly (p<0.05) increased the insulin levels when compared with the diabetic untreated
group but significantly (p<0.05) lower than the NC + H2O and NC + VCO groups

 

  

Figure 1.  Comparison of Insulin levels in Control, ATZ and Diabetic groups.   (Values are mean ± SEM. n=7)    a = p <
0.05 vs NC, b = p < 0.05 vs NC + VCO, c = p < 0.05 vs ATZ,  d = p < 0.05 vs Diabetic control  

  Insulin levels in normal control and ATZ recovery groups  

A significant (p<0.05) decrease was observed in mean insulin levels of the ATZ continued group
(10.46±0.13) when compared with the NC + H2O (14.94±0.45) and NC + VCO (16.25±0.26)
groups. There was a significant (p<0.05) increase with VCO administration in the VCO recovery
group (11.65±0.16) when compared to the ATZ continued group, but there was no significant
(p<0.05) difference between the insulin level in the VCO recovered and ATZ untreated group
(11.13±0.12) (Figure 2).
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Figure 2.  Comparison of Insulin levels in Control, ATZ Continued and Recovery Groups.   (Values are mean ± SEM. n=7)
  a = p < 0.05 vs NC, b = p < 0.05 vs NC + VCO, c = p < 0.05 vs ATZ continue d, d = p <  0.05  vs VCO recovered  

  GLUT4 levels (ng/ml) in normal control,  ATZ and diabetic groups 

Figure 3 shows the mean levels of GLUT4 in the experimental groups, which are 97.32±0.51,
142.86±0.99, 78.64±0.35, 74.82±0.37, and 95.99±0.37 for NC + H2O, NC + VCO, ATZ treated,
Diabetic control, and Diabetic +VCO groups, respectively. GLUT4 levels were found to be
significantly (p<0.05) higher in the NC + VCO group than in the NC + H2O group. The GLUT4 level
in the ATZ treated group was significantly (p<0.05) lower than that of the NC + VCO and NC +
H2O group. GLUT4 level in the diabetic untreated group was significantly (p<0.05) lower than that
of the ATZ-treated group, the NC + VCO group, and the NC + H2O group. In the diabetic VCO-
treated group, their GLUT4 level was significantly (p<0.05) higher than that of the diabetic
untreated and ATZ-treated groups but significantly (p<0.05) lower than the NC + VCO group and
not significantly (p<0.05) different from the NC + H2O. 
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Figure 3.  Comparison of Insulin levels in Control, ATZ and Diabetic groups.    Values are mean ± SEM. n=7.    a = p <
0.05 vs NC, b = p < 0.05 vs NC + VCO, c = p < 0.05 vs ATZ, d = p < 0.05 vs Diabetic control  

  GLUT4 levels in the normal control and ATZ recovery groups 

Figure 4 showed that the GLUT4 levels was significantly (p<0.05) lower in ATZ continued group
with mean values of 77.39±0.79 when compared with the NC + H2O (97.06±0.57) and NC + VCO
(142.46±1.12) groups. The mean values of GLUT4 in the VCO recovered group (111.66±0.76) was
significantly (p<0.05) higher than the NC + H2O group and ATZ continued group but significantly
(p<0.05) lower than the NC + VCO group. In the untreated group (102.53±0.53), GLUT4 level was
significantly (p<0.05) lower than the NC + VCO and VCO recovered group, but significantly
(p<0.05) higher than ATZ continued group; though not significantly different from the NC + H2O
group.
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Figure 4.   Comparison of Estradiol levels in Control, ATZ Continued and Recovery Groups.   (Values are mean ± SEM.
n=7)   a = p < 0.05 vs NC, b = p < 0.05 vs NC + VCO, c = p < 0.05 vs ATZ continue d, d = p < 0.05 vs VCO
recovered  

  DISCUSSION  

The FBG (fasting blood glucose) concentration of the NC+H2O and NC+VCO groups was not
significantly different at the end of the experiment's first phase. This supports the report by Eleazu 
et al. (2019) (31), which showed no significant change in FBG concentration of the VCO group
comparable to the NC+H2O group. The non-effect of VCO administration had on the FBG
concentrations of the NC+VCO concerning the NC+H2O group suggests that VCO did not
negatively impact their blood glucose concentrations (31). Triggering the production of reactive
oxygen species (ROS), which in turn cause the destruction of the beta cells and eventually result in
a condition of insulin-dependent diabetes, has been documented as the primary mechanism of
action of alloxan-induced diabetes (32). Thus, an alloxan-diabetic model is used to investigate
diabetes arising from beta-cell destruction caused by ROS (25). The primary marker of DM is
hyperglycemia owing to a decrease in pancreatic insulin secretion or defective insulin action and
insulin resistance by target cells (33). Type 1 DM results from idiopathic or cellular-mediated
autoimmune destruction of pancreatic β- cells; patients thus depend totally on exogenous insulin 
(34). Following alloxan injections, a significant increase in FBG of alloxan-induced diabetic animals
in comparison to NC+H2O, NC+VCO, and ATZ rats was noted. Similarly, several studies have
documented a marked increase in blood glucose levels following alloxan induction (25, 31, 35, 36, 37). It
was observed that treatment of the diabetic group with 10ml/kg of VCO for two weeks brought
about a significant drop in fasting blood glucose levels. This further supports the hypoglycemic
ability of VCO (38, 39). Several other studies have also reported the hypoglycemic effect of VCO on
alloxan-induced diabetic rats (25, 31, 37). This beneficial potential of VCO on blood glucose level was
attributed to its antioxidant ability (25). Ngala and co-workers (2016) (40) observed that the
administration of the coconut oil diet to diabetic mice significantly reduced blood glucose, which
could be mediated through its antioxidant effect (40). A study demonstrated that administering
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coconut oil prevented diabetes (41). According to our report, a significant elevation of fasting blood
glucose occurred in ATZ treated group comparable to NC+H2O and NC+VCO groups but the level
diminished concerning the diabetic untreated group. This probably showed that ATZ does not have
a hyperglycemic effect on the fasting blood glucose for the 14 days, i.e., the fasting blood glucose
level was still below 120mg/dl. This supports the report by Lim et al. (2009) (18), where FBG levels of
rodents treated with ATZ and placed on a regular diet increased compared to the controls. Jestadi
and co-workers (2014) (42) recorded a significant increment in FBG levels in diabetic untreated, and
diabetic rats administered ATZ comparable to control rats; nevertheless, no significant difference in
FBG concentration occurred comparing diabetic untreated and diabetic rats administered ATZ,
showing that ATZ did not further aggravate the diabetic blood glucose during the two weeks'
experimentation period. In the recovery group, the consistent elevation of the FBG concentration in
the ATZ continued group was recorded; the fasting blood glucose level increased to a
hyperglycemic level (125mg/dl-140mg/dl) but not up to the diabetic level (>140mg/dl) relative to
this research. A significant reduction in FBG levels in the atrazine sub-group that was administered
VCO compared with the other groups was observed. As a result of this, our report suggests that
VCO has a mitigating effect on Atrazine induced hyperglycemia.

Insulin causes a decrease in blood glucose by enhancing amino acids, glucose, and fats take-up and
storage after a meal; hence, a decline in the INL level in the plasma results in an increase in blood
sugar. The primary marker of DM is hyperglycemia, which decreases pancreatic secretion of insulin
or defective insulin action, i.e., insulin resistance by target cells (33). Lauric oil, one of the
components in VCO, has been documented to have insulinotropic potentials (25). In the NC+VCO
groups, a significant increment in insulin levels was recorded concerning the NC+H2O group. The
high insulin level seen in this group might be because of lauric acid in the VCO. A significant
decline in insulin concentration occurred in ATZ and diabetic untreated group comparable to the
control group. Reports of several researchers have shown that alloxan exerts a cytotoxic effect on
pancreatic β cells, resulting in Type 1 diabetes mellitus (35, 36). The mechanism of cytotoxic activity
of alloxan on beta cells has to do with essential sulphydryl (-SH) group oxidation, glucokinase
blockade, generation of toxic ROS, and cellular calcium homeostasis imbalance (36). The resulting
damage to β-cells, responsible for the reduced insulin secretion, results in a decrease in insulin
release and the attendant hyperglycemia with metabolic and other associated diabetic
complications. The fall in insulin level of the alloxan-induced diabetic animals observed in this study
is similar to the reports by Iranloye et al. (2013) (36) and Udia et al. (2016) (43), who also observed a
significant fall in serum insulin concentration of alloxan initiated diabetic rodents. Lack of insulin in
DM is associated with diabetic complications, reversed or arrested when DM is appropriately
managed with insulin injections or oral hypoglycaemic agents (44). With VCO treatment in the
Diabetic+VCO group, we observed a significant elevation in insulin concentration compared to
diabetic untreated rats, though significantly less compared with the control groups, no significant
change in comparison to ATZ treated groups. This supports the findings of Iranloye and colleagues
(2013) (25) where they also recorded an increment in serum insulin in diabetic rodents treated with
10 ml/kg BW dose of VCO but a non-significant elevation of insulin levels in diabetic rodents
administered 7.5 ml/kg body weight was observed. They concluded that the ineffectiveness of 7.5
ml/kg body weight and effectiveness of 10 ml/kg BW doses of VCO on serum insulin shows that the
effect of VCO on glucose homeostasis is dose-dependent. Ngala et al. (2016) (40) reported on the
effect of coconut oil alone and glibenclamide plus coconut oil alone in diabetic mice treatment.
They observed that coconut oil has a synergistic effect on glibenclamide action. The hypoglycemic
impact of the co-administration of glibenclamide and coconut oil was drastically higher than the
impact of coconut alone. They reasoned that coconut oil could consequently incite insulin discharge
which can potentiate the insulin release actuated by the drug glibenclamide or enhances insulin
sensitivity. Though serum insulin level was significantly boosted in VCO treated rats compared to
the diabetic untreated group, its level was reduced concerning NC+H2O; we also infer that
probably if VCO was used for a more extended period, the insulinotropic effects could be more
evident. The study has revealed a significant (p<0.001) increment in plasma insulin level in alloxan-
administered rodents treated with leaf extracts of Rothmanniahispidacomparable to control rodents
and diabetic non-treated rodents (43). They proposed that the increased insulin levels noted in their
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study resulted from the ability of the phytochemicals in Rothmanniahispidato stimulate insulin
release, inhibit insulin breakdown, and/or regenerate pancreatic β-cells that were damaged by
alloxan in the diabetic state. We also propose that the constituents or lauric acid present in VCO
could have also stimulated insulin synthesis, release and inhibited insulin breakdown. 

GLUT4 is a noteworthy transporter of glucose into the tissues and principal controller of the entire
homeostasis of glucose (3). Expression and translocation (to tissue surface) of GLUT4 receptors are
mainly regulated by insulin secretion. GLUT4 plays a significant role in insulin-stimulated glucose
uptake and utilization in skeletal muscles (45). Insulin also increases the expression of GLUT4 in the
target cells (46) and stimulates its translocation to the plasma membrane for the uptake of glucose 
(12). In muscle, insulin facilitates the transportation of glucose by GLUT4, stimulates glycogen
production and glycolysis.

Furthermore, it also enhances glucose uptake in the adipose tissue, and thus all maintain glucose
metabolism. The results from the test group indicated a significant decrease of GLUT4 in diabetes-
induced groups, compared to the control groups; this is similar to the investigation by Maria and co-
workers (2013) (47), where they reported that the levels of GLUT4 reduced by up to 70% in diabetic
mice compared with normal ones. Tsao et al. (1999) (48) also generated a type II diabetes
experimental mouse model by a genetic interruption in one allele of GLUT4 in muscle and fat
tissue, which prompts hyperglycemia and hyperinsulinemia; this demonstrated that a defect in
GLUT4 might contribute to insulin resistance. The pesticide has been documented to reduce the
expression of glucose transporters proteins in several organs, hypothesized to be the possible
association between them and insulin disruption (49). GLUT4 level in the ATZ-treated group was
observed to be significantly lower than that of the control group. This reduction of GLUT4 in rats
treated with ATZ could be due to Atrazine's oxidative properties because ATZ was found to
suppress antioxidant enzyme defenses in rodents. Oxidation has been reported to induce
carboxylation of the glucose transport channel of GLUT4, making them dysfunctional (8). From
these results, it is reasonable to infer that Atrazine may, in the long-term, induce insulin resistance
by causing dysfunction or a decrease in GLUT4 expression. This corresponds with the work of Lim 
et al. (2009) (18), where the insulin sensitivity index (ISI) was reported to be significantly lowered to
an average of 4.35 for the ATZ treated group concerning 6.1 in controls. The decreased expression
of GLUT4 levels and defect in GLUT4 trafficking may participate in the pathogenesis of
hyperglycemia and are notably connected with insulin resistance (5). Alloxan-induced diabetes and
ATZ notably caused a decreased expression of GLUT4, which could be linked to the diabetic and
hyperglycemic fasting blood glucose levels observed in the present research. The result revealed a
significant increment in levels of GLUT4 in the NC+VCO group compared with the NC+H2O group;
this increase might be because of VCO's antioxidative properties (50). It was discovered that
vanadium could increase GLUT4 expression in diabetic animals, but whether this occurs through
direct interaction with the GLUT4 promoter or through a yet unknown pathway was not elucidated.
VCO can also increase the GLUT4 expression in diabetic animals, and this may at least partially
explain the glucoregulatory effects of VCO. The recovery group observed that the GLUT4 level in
the VCO recovery group was significantly elevated concerning ATZ continued and untreated
groups. Its GLUT4 level was elevated significantly than that of the NC+H2O group. It can thus be
said that VCO can restore GLUT4 levels in rats exposed to ATZ. This increase in GLUT4 could be
due to VCO antioxidative properties on tissues that express GLUT4. This antioxidative action may
have allowed for the expression of the transporter, which had been rendered dysfunctional by ATZ
and diabetes. The overall effect of this would be a decrease in blood glucose level, which
corresponds with the work of Iranloye et al. (2013) (25) considerably diminished in diabetic rodents
that received VCO (for four weeks) than diabetic untreated rats (25). GLUT4 concentration in the
untreated group was observed to be elevated than that of the ATZ-continued group. From this, it is
reasonable to infer that withdrawal of ATZ from the animals led to a decrease in GLUT4 levels.
Nevertheless, it is critical to highlight that the GLUT4 level of these rats was lesser compared with
VCO-treated recovery rats.

  CONCLUSION  
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Insulin is the dominant glucoregulatory hormone. The fasting state regulates the plasma glucose
concentration primarily by restraining hepatic glucose production; higher concentrations, such as
those found after meals, are required to stimulate glucose utilization (51). GLUT4 is a significant
mediator of glucose removal from the circulation and a key regulator of the whole-body glucose
homeostasis (3). Expression and translocation (to tissue surface) of GLUT4 receptors are mainly
regulated by insulin secretion. This study has shown the deleterious effects of ATZ and diabetes on
glucose metabolism by reducing serum insulin and a reduced expression of GLUT4. VCO restored
GLUT4 levels but did not significantly restore the insulin to normal levels. Probably if used for a
more extended period, the effects might be more pronounced. 
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